Regulation of U6 Promoter Activity by Transcriptional Interference in Viral Vector-Based RNAi
نویسندگان
چکیده
The direct negative impact of the transcriptional activity of one component on the second one in cis is referred to as transcriptional interference (TI). U6 is a type III RNA polymerase III promoter commonly used for driving small hairpin RNA (shRNA) expression in vector-based RNAi. In the design and construction of viral vectors, multiple transcription units may be arranged in close proximity in a space-limited vector. Determining if U6 promoter activity can be affected by TI is critical for the expression of target shRNA in gene therapy or loss-of-function studies. In this research, we designed and implemented a modified retroviral system where shRNA and exogenous gene expressions were driven by two independent transcriptional units. We arranged U6 promoter driving shRNA expression and UbiC promoter in two promoter arrangements. In primary macrophages, we found U6 promoter activity was inhibited by UbiC promoter when in the divergent arrangement but not in tandem. In contrast, PKG promoter had no such negative impact. Instead of enhancing U6 promoter activity, CMV enhancer had significant negative impact on U6 promoter activity in the presence of UbiC promoter. Our results indicate that U6 promoter activity can be affected by TI in a proximal promoter-specific and arrangement-dependent manner.
منابع مشابه
Characterisation and application of a bovine U6 promoter for expression of short hairpin RNAs
BACKGROUND The use of small interfering RNA (siRNA) molecules in animals to achieve double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful method of sequence-specific gene knockdown. As DNA-based expression of short hairpin RNA (shRNA) for RNAi may offer some advantages over chemical and in vitro synthesised siRNA, a number of vectors for expression of shRNA have be...
متن کاملRNA interference with small hairpin RNAs transcribed from a human U6 promoter-driven DNA vector.
RNA interference (RNAi), a process of sequence-specific gene suppression, has been known as a natural gene regulatory mechanism in a wide range of organisms. Recently, a small-interference RNA (siRNA) technology has been reported to produce post-transcriptional gene silencing in mammalian cells. In the present study, we constructed a human U6 promoter-driven mammalian expression vector to produ...
متن کاملSchistosoma mansoni U6 gene promoter-driven short hairpin RNA induces RNA interference in human fibrosarcoma cells and schistosomules.
RNA interference (RNAi) mediated by short hairpin-RNA (shRNA) expressing plasmids can induce specific and long-term knockdown of specific mRNAs in eukaryotic cells. To develop a vector-based RNAi model for Schistosoma mansoni, the schistosome U6 gene promoter was employed to drive expression of shRNA targeting reporter firefly luciferase. An upstream region of a U6 gene predicted to contain the...
متن کاملShort hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells.
The post-transcriptional gene silencing in animals and plants is called RNA interference (RNAi). Guides for the sequence-specific degradation of mRNA are 21-nt small interfering RNAs (siRNAs) that are generated by Dicer-dependent cleavage from longer double-stranded RNAs (dsRNAs). To examine the relationship between the localization of dsRNA and the target cleavage of RNAi in human cells, we co...
متن کاملRNAi-based conditional gene knockdown in mice using a U6 promoter driven vector
RNA interference (RNAi) is a powerful tool widely used for studying gene function in a number of species. We have previously developed an approach that allows conditional expression of a polymerase III promoter based small hairpin RNA (shRNA) in mice using the Cre-LoxP system. This approach uses a U6 promoter, which is inactive due to the presence of a ploxPneo cassette in the promoter; this pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2010